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Abstract

The hydrodynamic problem of twin wedges entering water vertically at constant speed is analysed based on the

velocity potential theory. The gravity effect on the flow is ignored based on the assumption that the ratio of the entry

speed to the acceleration due to gravity is much larger than the time scale of interest. The problem is solved using the

complex velocity potential together with the boundary element method through three stages. When the body touches

water, the similarity solution is obtained for each wedge in isolation. This is used as the initial solution at the second

stage for the time stepping technique for each wedge in a stretched system defined through the ratio of the Cartesian

system to the distance the wedge travelled into water. When the disturbed zone of each wedge begins to affect the flow

generated by the other wedge, the stretched system is abandoned and the original system is used. At the third stage the

full interactions between the two wedges are included. Various results are provided for the wave elevation, pressure

distribution and force at different deadrise angles. They are compared with those obtained from a single wedge and the

interaction effect is investigated.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

When a body enters water through an initial contact point and subsequently its water plane changes continuously, a

unique feature will be that the disturbed fluid domain will increase from zero with the distance the body has travelled in

water. The flow at the initial stage is localized in a small area but its structure can be highly complex. In fact, for a

wedge with constant speed, the flow is self-similar when the effects due to viscosity and gravity are ignored

(Dobrovol’skaya, 1969). This means that the flow pattern at any instant will be the same. Thus at the beginning of the

impact, the spatial change of the physical parameters such as pressure and velocity can be extremely rapid in a very

small area. Previous numerical work (Zhao and Faltinsen, 1993; Lu et al., 2000) solved this problem by assuming a tiny

part of the wedge is already in the water. The solution at the beginning based on this approach is obviously wrong, but

it was found that for the constant speed entry of the rigid wedge, the initial error does not affect the solution at a later

stage significantly and the solution was found to be in good agreement with the analytical solution. When the wedge is

elastic, however, this initial error can be problematic. The error in pressure can lead to the wrong deformation of the

wedge. A similar situation is when the wedge enters water through free fall motion (Wu et al., 2004) in which the
e front matter r 2005 Elsevier Ltd. All rights reserved.
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acceleration is unknown. An error in pressure can give the wrong acceleration which gives the wrong velocity. This false

information is fed back into the flow through the boundary condition and the final solution could be quite misleading.

To deal with this kind of problem, an ideal numerical approach is to use the stretched coordinate system which is

defined through the ratio of the distance in the physical domain to the length travelled by the body into the water

(Wu et al., 2004). Although the computational domain will still change due to the deformation of the free surface, the

order of its overall size will remain more or less the same together with that of the element, while both of them will vary

with the disturbed zone of the free surface in the physical domain. As a result, tiny elements will be used in a very small

physical domain at the beginning, and the rapid spatial variation of velocity and pressure can be captured. This

technique was used by Wu et al. (2004) and the acceleration of the wedge obtained from the numerical simulation is

found to be in good agreement with the experimental data.

Here we consider the water entry problem of twin wedges. One of the obvious applications of this analysis is the

slamming loads on a catamaran. The analysis is not just to use a developed code for a single body for a different

configuration. In fact, it is necessary to use a three-stage approach here. The first stage is when the body touches water.

The flow around each wedge is fully independent. The interaction between the two wedges is wholly negligible and the

flow around each wedge can be obtained through the similarity solution. In the second stage, the time stepping method

is used and the similarity solution obtained from the first stage is used as the initial solution. The flow around each

wedge is, however, still independent and is virtually symmetric about its centreline. In the third stage, the disturbed

zones of both wedges begin to meet and their interaction becomes significant. The centreline of each wedge is no longer

the symmetry line for the local flow and the two wedges have to be treated together.

Korobkin (1998) considered the water entry of a catamaran section. He included the effect of compressibility of the

liquid and the elasticity of the body, but both the free surface and the body surface boundary conditions were linearized

and were satisfied approximately. The present analysis is based on the fully nonlinear model and boundary conditions

are imposed at their exact locations.

The boundary value problem at each stage is solved using the technique adopted by Wu and Eatock Taylor

(1995) and Wu et al. (2004) based on complex velocity potential theory together with the boundary element

method. The similarity solution at the first stage is obtained through iteration in a stretched system. Only half of a

wedge is considered because the interactions between two wedges are negligible and the flow around each wedge is

symmetric. The vertical line below the tip of the wedge is treated as a streamline which is extended to the control

boundary far away from the wedge. In this way, the body surface and the control surface far away from the body

become a single streamline. At the second stage, the solution is still obtained in the same stretched system through a

similar procedure. The difference is that the boundary conditions on the free surface are now satisfied through the time

stepping technique as the problem is considered in the time domain. At the third stage, the advantage of the stretched

system will disappear, because the distance between the two wedges is time-dependent in this system, while it is in fact

constant in the physical domain. Also, when the interactions between the two wedges become important at this stage,

the flow around each wedge is no longer symmetric about the centreline of the body. The vertical line below each wedge

is no longer a streamline. As a result, the body surface and control surface away from the body will become two

separate streamlines, which requires a substantial modification to the complex potential approach used in stages one

and two.

Simulations are made for twin wedges with various deadrise angles. Results are provided for pressure, force and wave

elevation at different stages.
2. Governing equations and numerical procedure

We consider the hydrodynamic problem due to two identical wedges entering the water surface with vertical

speed V, as shown in Fig. 1. A Cartesian coordinate system O� xy fixed in space is defined in which y points

vertically upwards along the centreline of the left wedge and the origin of the system is on the mean free surface. The

two wedges form mirror images to each other about x ¼ L. The fluid is assumed to be incompressible and inviscid, and

the flow is assumed to be irrotational. A velocity potential f can then be introduced, which satisfies the Laplace

equation

r 2f ¼ 0 (1)

in the fluid domain R. On the body surface S0, we have

qf
qn
¼ �Vny, (2)
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Fig. 1. Sketch of the problem.
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where V is positive when the body moves downwards, and n ¼ ðnx; nyÞis the normal vector of the body surface

pointing out of the fluid domain. The kinematic and dynamic conditions on the free surface SF or y ¼ z can be

written as

qf
qy
¼

qz
qt
þ

qf
qx

qz
qx

, (3)

qf
qt
þ

1

2
rfrf ¼ 0. (4)

The effect of acceleration g due to gravity has been ignored in Eq. (4). This is because the main interest in this kind of

problem is when the velocity is large and is at the initial period of the impact. In fact, Korobkin and Wu (2000) have

discussed that for a floating cylinder moving down suddenly, the effect of g is of order t2 when t is small. In the

Lagrangian form, the free surface boundary conditions can be written as

df
dt
¼ ft þ rfrf ¼

1

2
rfrf, (5)

dx

dt
¼ fx;

dy

dt
¼ fy. (6)
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The above problem can be solved in general through a time stepping method. At each step, it is convenient to use the

complex potential w ¼ fþ ic, where c is the stream function. The method has been used in a variety of two-

dimensional problems (Longuet-Higgins and Cokelet, 1976; Greenhow, 1982; Lin et al., 1985; Wu and Eatock Taylor,

1995; Wu et al., 2004). A brief summary is given here. Cauchy’s theorem givesI
w

z� z0
dz ¼ 0, (7)

where z ¼ xþ iy and z0 is a point outside of the fluid domain R. The integral in Eq. (7) is along the boundary of R.

Because of symmetry, we only consider half of the domain with xpL. As a result x ¼ L becomes part of SC and they

form a single streamline, as shown in Fig. 2. On the fluid boundary, we can write

w ¼
Xn

j¼1

wjNjðzÞ, (8)

where wj is the nodal values of the complex potential and n is the total number of nodes. The interpolation function is

chosen as

NjðzÞ ¼

ðz� zjþ1ÞÞ=ðzj � zjþ1Þ; z 2 ðzj ; zjþ1Þ;

ðz� zj�1ÞÞ=ðzj � zj�1Þ; z 2 ðzj�1; zjÞ;

0; zeðzj�1; zjþ1Þ:

8><
>: (9)

Substituting Eqs. (8) and (9) into (7), letting z0 approach node zk and using the boundary conditions, we have

Xn

j¼1

Akjfjjj2S0þSC
þ i
Xn

j¼1

Akjcjjj2SF
¼ �

Xn

j¼1

Akjfjjj2SF
� i
Xn

j¼1

Akjcjjj2S0þSC
, (10)

where

Akj ¼
zk � zj�1

zj � zj�1
ln

zj � zk

zj�1 � zk

þ
zk � zjþ1

zj � zjþ1
ln

zjþ1 � zk

zj � zk

. (11)

In Eq. (10), some of the terms have been moved to the right-hand side because f on SF and c on S0 and SC are

known at each time step, while those terms on the left are to be found. This procedure is similar to that used in the

various previous applications through the complex potential method mentioned above. However, there does exist a

major difference here. The control surface SC is usually treated as a rigid boundary. In the previous applications, it was

linked to the body surface to form a single streamline. Here no such link is possible. Thus, if we write c ¼ Vy on the

body surface, the constant value C of the stream function on SC cannot be chosen arbitrarily and it should be found

from Eq. (10). With the numbering system shown in Fig. 2 we can rewrite Eq. (10) as

XN2�1

j¼N1þ1

Akjfj þ
Xn

j¼N3þ1

Akjfj þ i
XN1�1

j¼2

Akjcj þ i
XN3�1

j¼N2þ1

Akjcj

þ i Ak1 þ
Xn

n¼N3

Akj

 !
C ¼ �

XN1

j¼1

Akjfj �
XN3

j¼N2

Akjfj � i
XN2

j¼N1

Akjcj . ð12Þ

Now, when 1okoN1 or N2okoN3, the real part of this equation will be taken, and when k ¼ 1 or N3okon the

imaginary part will be taken. Further, we can choose a node in the latter category and take the real part, which is to

obtain an extra equation for C. This then leads to the number of equations being equal to the number of unknowns and

the problem can be solved.

When the potential has been found, the Bernoulli equation can be used to obtain the pressure

p ¼ �rft �
1
2
rrfrf, (13)

where r is the density of the fluid. As discussed by Wu and Eatock Taylor (2003), w ¼ ft is not yet given at each time

step; but it can be treated as another harmonic function as it satisfies the Laplace equation. On the free surface, we have

w ¼ �1
2
rfrf, (14)

because p ¼ 0. On the wedge surface, the boundary condition can be written as (Wu, 1998)

qw
qn
¼ V

qfy

qn
.
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Once w is found, the horizontal and vertical forces Fx and Fy on a single wedge can be found from

Fx

Fy

 !
¼ �r

Z
S0

ðft þ
1
2
rfrfÞ

nx

ny

 !
dS. (15)

As discussed in the Introduction, the above procedure can be problematic in the initial stage when the tips of the twin

wedges touch the water. An appropriate approach is to write the above equations in the stretched system. We have

fðx; y; tÞ ¼ sVjðx; Z; tÞ, (16)

where x ¼ x=s, Z ¼ y=s and s ¼ Vt. jðx; Z; tÞ obviously satisfies the Laplace equation in the coordinate system ðx; ZÞ. On

the free surface, the Lagrangian form of the boundary conditions can be written as

dðsxÞ
dt
¼ Vjx;

dðsZÞ
dt
¼ VjZ, (17)

dðsjÞ
dt
¼

V

2
ðj2

x þ j2
ZÞ. (18)
Fig. 3. Results for b ¼ p=3: (a) wave profile, (b) pressure, and (c) force history.
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Fig. 3. (Continued)

Fig. 4. Results for b ¼ p=4: (a) wave profile, (b) pressure, and (c) force history.

G.X. Wu / Journal of Fluids and Structures 22 (2006) 99–108104



ARTICLE IN PRESS

Fig. 4. (Continued)

Fig. 5. Results for b ¼ p=6: (a) wave profile, (b) pressure, and (c) force history.
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Fig. 5. (Continued)
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On the body surface, Eq. (2) becomes

qj
qn
¼ �nZ. (19)

In particular, the two wedges can be treated separately, as the interaction is insignificant. In this case, the vertical line

below the tip of the wedge can be treated as the symmetry line for each wedge. It links the body surface and the control

surface to form a single streamline. As a result C becomes zero in Eq. (12).

When the time marching technique is used for Eqs. (16)–(19), an initial solution is required. Many analyses used the

flat free surface with j ¼ 0 as the initial solution. A more rational approach for this problem is to use the similarity

solution, which means that Eq. (16) can be written as

fðx; y; tÞ ¼ sVjðx; ZÞ. (20)

The free surface boundary conditions in Eqs. (3) and (4) can be written as

jZ � Zxjx þ x Zx � Z ¼ 0, (21)

j� xj� ZjZ þ
1
2
ðj2

x þ j2
ZÞ ¼ 0. (22)

There is a large number of publications for the similarity problem using various approaches, which include those by

Dobrovol’skaya (1969), Howison et al. (1991), Zhao and Faltinsen (1993) and Fraenkel and McLeod (1997). Here the

problem is solved by the boundary element method discussed above and the nonlinear boundary conditions on the free

surface in Eqs. (21) and (22) are satisfied through an iteration. The details can be found in Wu et al. (2004).
3. Results

All the solutions discussed below start from the similarity solution. The time domain method for a single wedge in

isolation then takes over. The overall size of the computational domain is more or less fixed in the stretched system

ðx; ZÞ, but it increases in ðx; yÞ with s. When the control surface SC reaches x ¼ L in the system ðx; yÞ, the solution

procedure for the twin wedges outlined in Eqs. (1)–(15) will be initiated. The length scale L and the entry speed V are

used for nondimensionalization. This means

t! tðL=V Þ; ðx; yÞ ! ðx; yÞL; p! pðrV2Þ; ðFx;FyÞ ! ðFx;FyÞrV2L; s! sL. (23)

The elements on the free surface and the body surface used in both stretched system ðx; ZÞ and system ðx; yÞ are
uniform. As a Lagrangian method is used to track the free surface, remeshing together with interpolation is applied
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regularly to avoid over distorted elements. When the jet is developed and it becomes sufficiently thin relative to the

element size, it is treated using the shallow water equation in the similarity solution and using Taylor expansion in the

time domain solution (Wu et al., 2004). The element size is taken as 0.05 while the time step is taken to ensure the fluid

particle will not cross the body surface when the free surface is tracked and its maximum value will not exceed 0.001.

Both of these choices have been found to give converged results.

We first consider a case with b ¼ p=3 and results for pressure distribution over the body surface, wave elevation

and the force are given in Fig. 3 for the left wedge. The simulation is made until the time when the shortest

distance between two bodies at the mean water level is sufficiently small. In fact this can be seen from Fig. 3(a)

where the wave elevation for the twin-wedges is truncated at the symmetry line of the two wedges. The figure

shows that the wave elevation on the left-hand side of the wedge is not very much affected by the presence of

the other wedge. The water level on the right-hand side does rise up compared with the result from the single

wedge, but the effect is still nowhere dramatic. The situation with pressure is, however, totally different. Fig. 3(b)

shows that the shape of the pressure distribution is completely different when there is another wedge nearby. At t ¼ 0:8,
the pressure at the tip for the twin-wedges case is almost double that for the single wedge. Fig. 3(c) gives the

force history on the wedge. It is evident that the variation is linear initially because the effect by the other

wedge is negligible and the solution is similar. When t increases, the variation becomes nonlinear because of interactions

between two wedges.

The calculated results for the case with b ¼ p=4 are given in Fig. 4. The overall behaviour of these curves is quite

similar to that in Fig. 3. One marked difference is that the point where the highest pressure occurs when t ¼ 0:5 has

moved towards to right plate of the wedge, which was at the tip in the previous case when t ¼ 0:5. Fig. 5 gives the results
for the case with b ¼ p=6. Because of the smaller deadrise angle and the longer jet, the simulation stops at t ¼ 0:23. The
result at this instant shows that the interaction effect on the elevation is even less significant but its effect on the pressure

is already quite important.

All these figures have clearly shown the importance of the interaction effect on the pressure. Physically, when the twin

wedges enter water, the water between them will be pushed towards the inner surfaces of the wedges. As a result, the

pressure will rise together with water level. Fig. 6 gives an evolution of pressure distribution on the wedge with b ¼ p=4.
The lowest curve corresponds to t ¼ 0, or the moment that the tip of the body touches the water. When the curves rise

up, they correspond to t ¼ 0:1; 0:2; 0:3; 0:4; 0:5, respectively. The pressure is symmetric initially, but when t40,

asymmetry is developed. It is known that discontinuity of pressure can exist in the inviscid flow (Wu, 2001). It is

therefore interesting to see that p seems to remain continuous at x ¼ 0, even when the flow is no longer symmetric. This

is similar to the case of steady flow over an asymmetric wedge of finite length (Milne-Thomson, 1968). Pressure

increases slowly initially in Fig. 6, but when the two wedges are getting very close near the waterline, the pressure goes

up very rapidly.
Fig. 6. Evolution of pressure distribution over the wedge with b ¼ p=4.
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4. Conclusions

The velocity potential problem of twin wedges entering water has been analysed numerically. Different schemes are

used at three different stages corresponding to physical features at these stages of the impact. The stability and the

accuracy of the results have shown the success of these schemes. The results obtained have shown the interaction effect

between two wedges is not highly significant for the wave elevation but it is hugely important for the pressure

distribution. The present work can be extended to the case when the body enters through free fall motion (Wu et al.,

2004) or when the elasticity of the body needs to be taken into account (Lu et al., 2000).
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